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Analysis of ensemble learning using simple perceptrons based on online learning theory
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Ensemble learning df nonlinear perceptrons, which determine their outputs by sign functions, is discussed
within the framework of online learning and statistical mechanics. One purpose of statistical learning theory is
to theoretically obtain the generalization error. This paper shows that ensemble generalization error can be
calculated by using two order parameters, that is, the similarity between a teacher and a student, and the
similarity among students. The differential equations that describe the dynamical behaviors of these order
parameters are derived in the case of general learning rules. The concrete forms of these differential equations
are derived analytically in the cases of three well-known rules: Hebbian learning, perceptron learning, and
AdaTron (adaptive perceptrgriearning. Ensemble generalization errors of these three rules are calculated by
using the results determined by solving their differential equations. As a result, these three rules show different
characteristics in their affinity for ensemble learning, that is “maintaining variety among students.” Results
show that AdaTron learning is superior to the other two rules with respect to that affinity.
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[. INTRODUCTION learning rule that he termed a “soft version of perceptron
) ) learning,” which includes both Hebbian learning and percep-

Ensemble learning has recently attracted the attention Gfon learning as special cases, and discussed it from the
many researcherl—6]. Ensemble learning means to com- viewpoint of generalization error. As a result, he showed that
bine many rules or learning machingsudents in the follow-  though an ensemble usually has superior performance to a
ing) that perform poorly. Theoretical studies analyzing thesingle student, an ensemble has no special advantage in the
generalization performance by using statistical mechaniceptimized case within the framework of the soft version of
[7,8] have been performed vigoroudlg—6|. perceptron learning.

Hara and Okadd4] theoretically analyzed the case in  Though Urbanczik discussed ensemble learning of nonlin-
which students are linear perceptrons. Their analysis wagar perceptrons within the framework of online learning, he
performed with statistical mechanics, focusing on the factreated only the case in which the numbéof students is
that the output of a new perceptron, whose connectiof@rge enough. Determining differences among ensemble
weight is equivalent to the mean of those of students, idéarnings with Hebbian learning, perceptron learning, and
identical to the mean outputs of students. Krogh and SollicdaTron learming(three typical learning rulgss a very at-

[5] analyzed ensemble learning of linear perceptrons wittiractive problem. _ _ _

noises within the framework of batch learning. They showed _ Based on the past studies, we discuss ensemble learning
that the generalization performance can be optimized b K nonlinear perceptrons, which decide their outputs by
choosing the best size of learning samples for a l&rgjenit, ign functions within the framework of online learning and

whereK is the number of students, and that the generalizaflnlte K [14,19. First, we show that an ensemble generaliza-

tion performance can be imoroved by dividing learnin tion error ofK students can be calculated by using two order
Peric . _pe 1mp d by 9 gparameters: one is a similarity between a teacher and a stu-
samples in the noisy situation whéhis finite.

On the other hand. Hebbian | . | . dent, the other is a similarity among students. Next, we de-
n the other hand, Hebbian learning, perceptron leamingy,q gjtferential equations that describe dynamical behaviors
and AdaTron(adaptive perceptrgriearning are well known

. ) . g _of these order parameters in the case of general learning
as learning rules for a nonlinear perceptron, which decides ity o5~ After that, we derive concrete differential equations
output by sign functio9-12). Urbanczik[6] analyzed en-

. . : about three well-known learning rules: Hebbian learning,
semble Iearn!ng of nqnllnear perceptrons .that. d.eC|de the';'3erceptr0n learning, and AdaTron learning. We calculate the
outputs by sign functions for a largk limit within the

f K of online | 613l H q lized ensemble generalization errors by using results obtained
ramework of online leaming13]. He treated a generalize through solving these equations numerically. Two methods

are treated to decide an ensemble output. One is the majority
vote of students, and the other is an output of a new percep-
*Electronic address: miyoshi@kobe-kosen.ac.jp tron whose connection weight equals the mean of those of
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students. As a result, we show that these three learning rules ME Ik\fﬂ, (8)
have different properties with respect to an affinity for en- ) S
semble learning, and AdaTron learning, which is known towherely is one of the order parameters treated in this paper.

have the best asymptotic propef§-17, gives the largest The common inpuk is presented to the teacher and all
improvement by ensemble among the three |earning ru|es_StUdentS in the same order.Within the framework of online

learning, the update can be expressed as follows:

Il. MODEL J= IR, )

Each _student treated ir) this paper is a perceptron that = f(sgriv™,uy), (10)
decides its output by a sign function. An ensembleKof ) _ _
students is considered. Connection weights of students aMherem denotes time step, arfds a function determined by
I35, ke 3= )T k=1,2, ... K, and inputx  learning rule. _
=(xq, ... X" areN dimensional vectors. Each component In this paper, two methods are treated to determine an
of x is assumed to be an independent random variable th&nSemble output. One is the majority vote Kfstudents,
obeys the Gaussian distributi?v{0, 1/N). Each component Wh'gh meaﬁs an ensemble output :js ﬂemdedbtom? if
of 32 that is the initial value ofl,, is assumed to be gener- Students whose outputs arel exceed the number of stu-

; ; b ; dents whose outputs arel, and—1 in the opposite case.
ted ding to the G distributi®to, 1) ind - ' !
ated according to the Gaussian distributiit0, 1) indepen Another method for deciding an ensemble output is adopt-

dently. Thus . . .
ing an output of a new perceptron whose connection weight
a1 is the mean of the weights df students. This method is
() = 04069 = (1) simply called the weight mean in this paper.
(B =03)H=1, 2 Ill. THEORY
where () denotes the average. Each student’s output is In this paper, the majority vote and the weight mean are
sgn(uqly),sgriuly), ..., sgriiukl) where treated to determine an ensemble output.We use
P R SRVEL . EK:
sgruh=) 1" €=0O —B-xkzlsgr(Jk-x) : (11
Uklk:Jk'X. (4) and
K
Here, I denotes the length of studedit. This is one of the B
order parameters treated in this paper and will be described €=6|-B-x k%‘]k X 12

in detail later. In this papeuy is called a normalized internal

potential of a student. as errore for the majority vote and the weight mean, respec-
The teacher is also perceptron that decides its output by tvely. Here,©(z)=1 for z>0 and 0 otherwisee, x and Jy

sign function. The teacher’s connection weighBisin this  denotee™, x™, and J;, respectively. However, superscripts

paper,B is assumed to be fixed whei=(B,,...,By)"is  m, which represent time steps, are omitted for simplicity.

also anN-dimensional vector. Each compondhis assumed Generalization errog, is defined as the average of ereor
to be generated according to the Gaussian distributioover the probability distributiomp(x) of input x. The gener-
MN0,1) independently. Thus alization errore; can be regarded as the probability that an
B ~ ensemble output disagrees with that of the teacher for a new

(B)=0, ((B))=1. (5) input x. One purpose of statistical learning theory is to theo-

The teacher’s output is sgn where retically obtain generalization error. In the case of a majority
vote, using Eqs(4), (6), and(11), we obtain
v=B-Xx. (6) K

Here,v represents an internal potential of the teacher. For 626(—02 sgr(uk)>. (13
simplicity, the connection weight of a student and that of the k=1

teacher are simply called student and teacher, respectively
In this paper the thermodynamic lim—c is also
treated. Therefore

K
XI=1, [B[=VN, [J]=VN, @) e=e<—u§‘,uk>. (14)
k=1

1n the case of a weight mean, using E¢®, (6), and(12),
we obtain

where|-| denotes a vector norm. Generally, a norm of stu-
dent|J,| changes as the time step proceeds. Therefore thEhat is, errore can be described as=e({uy},v) by using a
ratio |, of the norm toyN is considered and is called a length normalized internal potential, for the student and an inter-
of studentJ,. That is, nal potentialv for the teacher in both cases. Therefore the

036116-2



ANALYSIS OF ENSEMBLE LEARNING USING SIMPLE.. PHYSICAL REVIEW E 71, 036116(2005

generalization errog, can be also described as

K
« IIdUﬂUPGUQJUGGUdJﬂ, (22)
=1
=meﬁ pwmmmm«ww<m
=1

~ (ud,0)=(ug, v)T
by using the probability distributiop({u,},v) of u, andwv. p(ud.v) = (2m)*D /2|2|1/2 2
Since the thermodynamic limN— oo is also considered in

this paperu, andv obey the multiple Gaussian distribution (23
based on the central limit theorem. The discussion in this
paper falls within the framework of online learning. There- I G2 - d R
fore since an inpuk and a studenf, have no correlation Oy 1 ’ . :
with each other, from Eq4), the mean and the variance of =0 o gk |- (24)
U, are '
Oky --- Okk-1 1 Rk
<uk>:ol <(uk)2>= 1! (16) Rl RK 1

respectively. In the same manner, since an inpund a  As a result, a generalization erref can be calculated if all

teacherB have no correlation with each other, from Ef),  gimilaritiesR, andq,, are obtained. Let us thus discuss dif-

the mean and the variance ofare ferential equations that describe dynamical behaviors of
W)=0, @W?=1, (17) these order parameters. Differential equations regartling

and R, for general learning rules have been obtained based
respectively. From these, all diagonal components of the coan self-averaging as follow®]:
variance matrix® of p({u},v) equal unity. 2
Let us discuss a direction cosine between connection dly —<fk O+ <f> (25)

weights as preparation for obtaining nondiagonal compo-

nents. FirstR, is defined as a direction cosine between a

teacherB and a studend,. That is, AR _ (f) — FuoRe Ry

f2 26
dt e 2|2< o (26)
Ro= Dk _ E B,J (18) -
k |B||Jk| LNE ki where(-) stands for the sample average. That is,
Ry is called the similarity(overlap in other wordsbetween (U = J dudvps(Uy,v) F(SgND), U Uy, (27)
teacher and student in the followinBy is the second order

parameter treated in this paper. Negt, is defined as a

direction cosine between a studeht and another student
Jp. That is, o (fiw) = J dugdo pa(u,v) f(sgnv), udv, (28
Jk N Jkr
qW=mmm|mN§%%~ (19 <©:jmwM%wmwmmm% (29)
wherek#k'. gy is called the similarity among students in . T
the following, andgy,s is the third order parameter treated in (U v) = 1 exp(— (U, v) 257 (Uy,v) ) (30)
this paper. 2T 203|112 2 ’
Covariance between an internal potentiadf a teacheB
and a normalized internal potentia] of a student), equals (1 R
a similarity R, between a teachd® and a studend, as fol- %= R 1 (31
lows:
Next, let us derive a differential equation regardigg
for the general learning rule. Considering a studgntaind
<”“k>:< kIElBXIE JkJXJ> (200 another studens,, and rewriting asy—ly, I — 1 +dly,

A — s G — Gae +daee, and LN—dt, a differential
Covariance between a normalized internal potentiabf a  equation regarding is obtained as follow$4]:

student), and a normalized internal potential, of another

studentJ,, equals a similarityg,, among students as fol- At - {Fio Ui ~ G (i Ui + (Fietir) ~ G (Fitho) + i)

lows: dt lk’ Ik Iklk’
2
e [ (7 (e
(U} = 2 Jk|X|E JiXi /= O - (21 - _; +t—— |, (32
i icy 2\ I e
Therefore Eq(15) can be rewritten as from Egs.(9), (19), and(25) and self-averaging, where
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K=1 (Theory) ——

K=3, MV (Theory) ——— ]
K=3, MV (simulation) -~
- K=3, WM (Theory) —
A\ K=3, WM (simulation) -~

e
in

<fkukr> = f ddeUk/dU pg(uk,uk/,v)f(sgr‘(v),uk)uk/, (33)

<
~
-

<fk,uk>=fdukduk,dvp3(uk,uk,,v)f(sgr(v),uk,)uk, (34)

Generalization Error
=
(98]

(fif) = f dudue doPs(Uy, U, 0) F(SGN), u) F(SgNwv), Uy 02
(35 0.1
) A
_ Time: t=m/N
U, Uyr,0) =
P3(Ui, Uy, 0) (2m)3/234/12
1 T FIG. 1. Dynamical behaviors of ensemble generalization error
Xexp(— (U Uer,0) 237 (U, U, 0) ) (36) in Hebbian learning.
2 L
to these results, we have derivéfguy,) and(ff,/) (see Ap-
1 Gw R pendix A).
R and q have been obtained by solving Edg85), (26),
3=k 1 Re | (37)  (32),(38), and(39) and the derived sample averages numeri-
Re Re 1 cally. We have obtained numerical ensemble generalization
errorse, in the case oK =3 by using Eqs(22)—(24) and the
aboveR andg. Figure 1 shows the results. In this figure, MV
and WM indicate the majority vote and the weight mean,
IV. RESULT respectively. Numerical integrations of H&2) in theoretical
A. Conditions of analytical calculations calculations have been executed by using the six-point

) ) ) . closed Newton-Cotes formula. In the computer simulation,
As described above, in this paper each component of iniN=1¢* and ensemble generalization errors have been ob-

tial value J; of studentd, and teacheB is generated inde- tained through tests using 1@andom inputs at each time
pendently according to the Gaussian distributidi0,1),  step. In this figure, the result of theoretical calculations of

and the thermodynamic limh — < is considered. Therefore k=1 is also shown to clarify the effect of the ensemble. This
all J, andB are orthogonal to each other. That is, figure shows that the ensemble generalization errors obtained

0_ 0 _ by theoretical calculation explain the computer simulation
Re=0, 0o =0. (38) guantitatively.
From Eq.(38) and symmetry of students, we can write Figures 2 and 3 show the results of computer simulations
whereN=10°, K=1, 3, 11, 31 untit=10* in order to inves-
e =(feup,  Efed) =Fofo (39 tigate asymptotic behaviors of generalization errors.

Asymptotic behavior of generalization error in Hebbian

in Eqg. (32). From Eq.(38) and symmetry among students, learning in the case of the numbkérof students at unity is

we omit subscriptk,k’ from order parameterk, R,, and
Owe 1IN Egs. (25—37) and write them a$,R, andg. In the 1
following sections, we analytically obtain five sample aver-
ages(fup, (fo), <f§>, (fuer), and{f,f,,» concretely, which
are necessary to solve Eq25)—(37) with respect to typical
learning rules under the conditions given in E(®8) and
(39). R andq are obtained by solving the above sample av-
erages and Eq$25), (26), (32), and (38) numerically. We
obtain numerical ensemble generalization eregrby calcu-
lating Eq.(22) with the obtainedR andgq.

0.1¢

0.01 ¢

Generalization Error

0.001 K=31 (MV) - 3

B. Hebbian learning

0.0001 ' - : -
The update procedure for Hebbian learning is 0.1 1 10 100 1000 10000

Time: t=m/N
f(sgn(v),u) = sgrv). (40) _ _ o »
) ) ) . FIG. 2. Asymptotic behavior of generalization error of majority
Using this expressior{fyuy, (fw), and(fy) in the case of  yote in Hebbian learning. Computer simulations, except for the
Hebbian learning can be obtained by executing EQssolid line. Asymptotic order of ensemble learning is the same as that
(27)~(29) analytically[9,17] (see Appendix A In addition atk=1.
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! 2 1.03 : : : :
1
<102} |
5 ol g
& 5101} |
= =
S 2 1
g 001} 5 M
= = 0.99 HE T
5 5 i ‘i . |
8 0.001] | 5 0.98 H{ }1 I i Hebb, MV, Theory 1
S 0. K=31 (WM)---mrmm o} Hebb, MV, Simulation
T 097} Hebb, WM, Theory - il
= Hebb, WM, Simulation ;
0.0001 \ \ . . < (0.96 | 1
0.1 1 10 100 1000 10000 g . . ‘ .
Time: t=m/N z 09, 02 04 0.6 0.8 1
1/K

FIG. 3. Asymptotic behavior of generalization error of weight

mean in Hebbian learning. Computer simulations, except for the FIG. 4. Relationship betwee and effect of ensemble in Heb-

solid line. Asymptotic order of ensemble learning is the same as thaﬂ)ian learning. Ensemble generalization ewgpfor a largeK limit is
atK=1. about 0.99 times that df=1.

O(t™*?) [9]. Asymptotic orders of the generalization error in nnecessary. These facts have made it easy to perform the
the case of ensemble learning are considered equal to thof@merical calculations of the generalization error for a large
of K=1, since properties d=3, 11, 31 are parallel to those
of K=1in these figures. Figure 4 shows the results obtained by the Metropolis
To clarify the relationship betweeK and the effect of method using the values & andq calculated numerically
ensemble, we have obtained theoretical ensemble generalizgy Hepbian learning and Eq$42)—(44). Calculations have
tion errors for various values df. Here, it is difficult to  peen executed fok=1, 3, 5, 7, 9, 11, 13, 21, 31, and 51 in
execute numerical integration of E@2) whenK>3 by the  oih the majority voteMV) and the weight meafwM).

Newton-Cotes formula used in the calculations for Fig. 1.The number of MonteCarlo steps is%@hese theoretical
Therefore the Metropolis method, which is a type of Monteregyts are fitted to two quadratic curves. In this figure, the

Carlo method, has been used. We then orthogonalized thegts of computer simulations whes=10%, K=1, 3, 5, 7,
variables of integration to eliminate the calculation of in- 9, 11, 13, 21, 31, and 51 have also been drawn for compari-
verse matrices of E¢24). That is, son with the theoretical calculations. In the computer simu-
lations, ensemble generalization errors have been obtained
through tests using #dandom inputs. The figures show the
values oft=50 for both theoretical calculations and com-
n- Puter simulations, and this is the time for which is considered
that the learnings are sufficiently within the asymptotic re-
gions with respect to Fig. 2 and 3. Here, since the relation-
ship between 1K and ensemble generalization errors shows
-1 _a —fq_R2 - a straight line[4] in the case of linear perceptrons, the ab-
a=vl-g b=\g-R’, c=R. (42) scissa is 1K in Fig. 4. The ordinates have been normalized
By using these, b, andc, we can rewrite Eqg22)—(24) as bystge theoretical ensemble generalization errokeflL and
follows: t=50.

u=au.+bl+cv, k=1,2,...K, (41)

whereu,, Uy, U, andv obey the Gaussian distributio¥i(0, 1),
andU,, 0, andv have no correlation with each other. Co
sidering that subscriptk,k’ have been omitted from order
parametersx,, q., and Eq.(24), we obtain

K

&= | TT dtpy(@dtpy()dopy(v) elfal + b+ co},v), €. Perceptron leaming
k=1 The update procedure for perceptron learning is
43
43 f(sgr(v),U) = O(- U)sgriv). (45)
1 u2 Using this expressionf,uy), (fv), and(fﬁ) in the case of
py(u) = (ZT)l’ZeXp<_ E) (44 perceptron learning can be obtained by executing Egs.

(27)—(29) analytically[9,17] (see Appendix B In addition to
These operations orthogonalized the variables of integrathese results, we have derivégu,.) and{f,f..) (see Appen-

tion in exchange for their number having been increasediix B).

from K+1 toK+2. The multiple Gaussian distribution func- In the same manner as Hebbian learniRgand g have

tion p({u},v) can be rewritten as products of simple Gauss-been obtained by solving Eq®5), (26), (32), (38), and(39),

ian distribution functionsp,(-) by this orthogonalization. and the derived sample averages numerically. We have ob-

Thus calculations of inverse matrices of H@4) become tained numerical ensemble generalization errgysn the
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K=1 (Theory) ——
05 K=3, MV (Theory) -~

- ;% K=3, MV (simulation) -

g 04| A K=3, WM (Theory) - 5 0.1t

g \X\\ K=3, WM (simulation) -- E

ks 5

037 g 001}

| =

[P i

S 02t g

© & 0.001}

0.1}
. ' , . 0.0001 : : : :
0 2 4 6 8 10 0.1 1 10 100 1000 10000
Time: t=m/N Time: t=m/N

FIG. 5. Dynamical behaviors of ensemble generalization error

) ron | ] FIG. 7. Asymptotic behavior of generalization error of weight
€y in perceptron learning.

mean in perceptron learning. Computer simulations, except for the

) solid line. Asymptotic order of ensemble learning is the same as that
case ofK=3 by using Eqs(22)—(24) and the abov® andq.  atk=1.

Figure 5 shows the results. This figure shows that the en-

semble generalization errors obtained by theoretical Calcu'%etropolis method using the values Bfand q calculated

tion explain the computer simulation quantitatively. : -
: : . numerically for perceptron learning and E¢42)—(44).
Figures 6 and 7 show the results of computer simulations y P P 9 14244

whereN=1C®, K=1, 3, 11, 31 untit=10" in order to inves-
tigate asymptotic behaviors of generalization errors. The ef-
fect of ensemble is maintained asymptotically. Asymptotic o
behavior of generalization error in perceptron learning in the The update procedure for AdaTron learning is
case of the numbé¢ of students at unity i©(t"*3) [9]. Note f(sgr(),u) = - UO (- up) (46)
that though this asymptotic behavior is worse than that of ' '
Hebbian learning, perceptron learning is robust to the input/sing this expressior(fuy, (fw), and(ff) in the case of
distribution. On the contrary, Hebbian learning fails when-AdaTron learning can be obtained by executing Egs.
ever the teacher vector of a linearly separable rule is not27)—(29) analytically[9,17] (see Appendix € In addition to
aligned with one of the principle components of the inputthese results, we have deriveiju,.) and(f,f..). Using Eq.
distribution[16]. Since properties 0k=3,11,31 are parallel (46), (fu, )ffi) and in the case of AdaTron learning are
to those ofK=1 in Figs. 6 and 7, asymptotic orders of the gbtained as follows by executing Eq83) and (35) analyti-
generalization error in the case of ensemble learning are corg|ly.
sidered equal to those &f=1, In the same manner as Hebbian learniRgand q have

To clarify the relationship betweel and the effect of been obtained by solving Eq®5), (26), (32), (38), and(39),
ensemble, we have obtained theoretical ensemble generalizand the derived sample averages numerically. We have ob-
tion errors for various values . In the same manner as tained numerical ensemble generalization errgysin the
Hebbian learning, Fig. 8 shows the results obtained by thease ofk =3 by using Eqs(22)—(24) and the abov&® andq.

D. AdaTron learning

1 T T T T

=)
w
I 1
g 0l € 0.95
3] [83)
'5 § 0.9
'§ 0.01 ¢ ,§ 0.85
£ T 08
: :
o 0.001 ¢ (ﬂj’ 0.75 + & Perceptron, MV, Theory
o % Perceptron, MV, Simulation +
g 0.7 Perceptron, WM, Theory -
0.0001 , , . . = 065 Perceptron, WM, Simulation ~ x
0.1 1 10 100 1000 10000 E 06 , , , ,
Time: t=m/N < 0 0.2 0.4 0.6 0.8 1
1/K

FIG. 6. Asymptotic behavior of generalization error of majority
vote in perceptron learning. Computer simulations, except for the FIG. 8. Relationship betweeld and effect of ensemble in per-
solid line. Asymptotic order of ensemble learning is the same as thateptron learning. Ensemble generalization ergifor a largeK
atK=1. limit is about 0.72 times that dk=1.
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K=1 (Theory) ——

0.5 K=3, MV (Theory) ———
Ny I\ K=3, MV (simulation) - -
Eoal N K=3, WM (Theory) 5
ol A\ K=3, WM (simulation) LE
o R =]
S 8
FO03r g o001
= =
St - K= ({WM)-----
£02} E 1 K=11(WM)—
0] & 0001}

0.1}

: - - : 0.0001 : ' : '
0 2 4 6 8 10 0.1 1 10 100 1000 10000
Time: t=m/N Time: t=m/N

FIG. 9. Dynamical behaviors of ensemble generalization error  FIG. 11. Asymptotic behavior of generalization error of weight
€y in AdaTron learning. Improvement @f; by increasingK from 1 mean in AdaTron learning. Computer simulations, except for the
to 3 is largest of the three learning rules. solid line. Asymptotic order of ensemble learning is the same as that

. L atkK=1.
Figure 9 shows the results. This figure shows that the en-

semble generalization errors obtained by theoretical calculas-emble learning. However. the dearee of improvement is
tion explain the computer simulation quantitatively. 9- ' 9 P

Figures 10 and 11 show the results of computer Simula_small in Hebbian learning and large in AdaTron learning.
tions whereN=10. K=1. 3. 11. 31 untit=10" in order to _ First, we discuss the reason for this difference in the follow-

investigate asymptotic behaviors of generalization errors. Ef"9: _
fect of ensemble is maintained asymptotically. Asymptotic Each student moves towards teacher as learning proceeds.

behavior of generalization error in AdaTron learning in the Therefore similaritiesR, and qy. increase and approach
case of the numbeK of students at unity i©(t™) [9,12].  unity, leading toR, andqys becoming less irrelevant to each
Asymptotic orders of the generalization error in the case opther. For example whelRe=R,, =1, g cannot be#1 since
ensemble learning are considered equal to thos&€oi, a teacheB, a student),, and another studemd, have the
since properties oK=3, 11, 31 are parallel to those &f  same direction. ThuR, andq,, are under a certain relation-
=1 in these figures. ship restraint with each other. Whep, is relatively smaller

To clarify the relationship betweel and the effect of when compared witlR,, variety among students is further
ensemble, we have obtained theoretical ensemble generalizaaintained and the effect of the ensemble can be considered
tion errors for various values d€. In the same manner as as large. On the contrary, aftgg, becomes unity, a student
Hebbian learning, Fig. 12 shows the results obtained by thédx and another studed, are the same and there is no merit
Metropolis method using the values Bfand g calculated in combining them.

numerically for perceptron learning and E¢42)—(44). Let us explain these considerations intuitively by using
Fig. 13. Both(a) and (b) show the relationship among two
V. DISCUSSION students];, J, and a teacheB when learning has proceeded

Figures 1, 4, 5, 8, 9, and 12 show that the generalizatiof® some degree from the condition that the students and the
errors of the three learning rules are all improved by enieacher have no correlation. Then, as shown in Fig. 13, stu-

! g
e u' 1 |
Y ] S 095}
i} = L
' 5 . 'g 0.9
§ 0.01 F K=1, Theory —— J E 085+
=} K=1 —— =
B K=3 (MV) - 5 08¢
& K=11 (MV) -~ 2 075} AdaTron, MV, Th
0.001 _ J X alron, , Theory
© K=31 (MV) 2 AdaTron, MV, Simulation +
§ 07 AdaTron, WM, Theory -~ ]
0.0001 . . . . A g 0.65[ AdaTron, WM, Simulation x J
0.1 1 10 100 1000 10000 3 06 . . . A
Time: t=m/N ) 0.2 0.4 0.6 0.8 1
I/K

FIG. 10. Asymptotic behavior of generalization error of major-
ity vote in AdaTron learning. Computer simulations, except for the  FIG. 12. Relationship betwedtand effect of ensemble in Ada-
solid line. Asymptotic order of ensemble learning is the same as thatron learning. Ensemble generalization eregifor a largeK limit
atK=1. is about 0.68 times that df=1.
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6 @ 1r J
Jq J JiN
0.8
206
=
(@ (b) £04}
@ Theory ———
FIG. 13. Variety among students. 02t Simulation (N=1e5) -~ i
dents must distribute to points the same distance from the 0 ]
teacher. That is, the similarifg; of the teacher and a student 0 2 "1 é {; 10

J, equals the similarityr, of the teacher ar_ld a s_tude]ytin Time: t=m/N
both (a) and(b). Here,(a) shows the case in which students
are unlike each other—in other words the variety among stu- FIG. 15. Dynamical behaviors & andq in perceptron learning.
dents is large, that igy is small. In this case, it is obvious Here,q is smaller tharR in the early period of learningt<4.0).
that a mean vector af; andJ, is closer to the teach&than  Perceptron learning maintains the variety among students for a
eitherJ, or J,. Therefore, a mean vect¢t/K)S(_,J, of the  longer time than Hebbian learning.
students’ connection weights can closely approximate the ] ] ]
connection weight vectds of the teacher in cases likg). In  =10°). Figure 16 shows a comparison between the theoreti-
addition, a combination method other than a mean of stucal results regarding the dynamical behaviorskadnd q of
dents, e.g., the majority vote of students, must approximat&daTron learning, which are obtained by solving E(5),
the teacher better than each student can do alone in cases 1i#&5). (32, (38), (39), and (C3~(C7) numerically and by
(a). In this case, the effect of ensemble learning is strong. OgOMputer simulatioiN=10). In these figures, the theoreti-
the contrary, Fig. 1®) shows the case in which students arecal results and the computer simulations closely agree with
similar to each other—in other words, the variety amongeach other. That is, the derived theory explains the computer
students is small, meanirmgis large. In this case, the signifi- Simulation quantitatively. Figure 14 shows tlatises more
cance of combining two students is small since their output§apidly thanR in Hebbian learning; in other wordsj is
are almost always the same. Therefore the effect of ensembfelatively large when compared witR meaning the variety
learning is small whem is large, as in Fig. 1®). Thus the = among students disappears rapidly in Hebbian learning. Fig-
relationship betweeR, andqy. is essential to know in en- ure 15 shows that is smaller tharR in the early period of
semble learning. learning (t<4.0), which means perceptron learning main-
Figure 14 shows a comparison between the theoreticdRins the variety among students for a longer time than Heb-
results regarding the dynamical behaviorfRaindq of Heb- ~ bian learning. Figure 16 shows thatis relatively smaller
bian learning, which are obtained by solving E(5), (26), when compared witlR than in the cases of Hebbian learning
(32), (39), (39), and(A2)—(A4) numerically and by computer and perceptron learning. This means AdaTron learning main-
simulation (N=10°). In the same manner, Fig. 15 shows atains variety among students most out of these three learning
comparison between the theoretical results regarding the dyules.
namical behaviors oR andq of perceptron learning, which ~ Figures 14-16 show thatis relatively small when com-
are obtained by solving Eq&25), (26), (32), (38), (39), and pared withR in the case of AdaTron learning than in Heb-
(B2)—(B5) numerically and by computer simulatiofN

1 L
b 0.3
08 2
E 0.6
) L E
206 2 04
::_3 Theory
E04r 02} Simulation (N=1e5) -
© Theory ———
02 Simulation (N=1e5) -~ J 0
0 | 0 2 4 6 8 10
A . . ) Time: t=m/N
0 2 4 6 8 10
Time: t=m/N FIG. 16. Dynamical behaviors & andq in AdaTron learning.

Here, q is relatively smaller when compared wifR than in the
FIG. 14. Dynamical behaviors @& andq in Hebbian learning. cases of Hebbian learning or perceptron learning. AdaTron learning
Here,q rises more rapidly thaR, which means the variety among maintains variety among students most out of these three learning
students disappears rapidly in Hebbian learning. rules.
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1 ' ' ' = tion error is larger than for the other two learning rules in the
ey period oft<6. This paper shows that the fastest asymptotic
08+ 7 characteristic of AdaTron learning is maintained in ensemble
learning and that AdaTron learning has a good affinity with
= ensemble learning in regard to “the variety among students”
z 0.6 | and the disadvantage of the early period can be improved by
E combining it with ensemble learning.
E 04 r 1 From the perspective of the difference between the major-
« ity vote and the weight mean, Figs. 1, 4, 5, 8, 9, and 12 show
o2t / AdaTron ) that the improvement by weight mean is larger than that by
Perceptron - majority vote in all three learning rules. Improvement in the
02 Hebb -~~~ generalization error by averaging connection weights of vari-

ous students can be understood intuitively because the mean
of students is close to that of the teacher in Fig@L3The
reason why the improvement in the majority vote is smaller
FIG. 17. Relationship betweeR and q (theory. Here,q of  than that in the weight mean is considered to be that the
AdaTron learning is the smallest when compared W&tiThe rising ~ variety among students cannot be utilized as effectively by
of q is the slowest and variety among students is best maintained ithe majority vote as by the weight mean. However, the ma-
AdaTron learning. jority vote can determine an ensemble output only using out-
puts of students, and is easy to implement. It is therefore
bian learning and perceptron learning. As described beforesignificant that the effect of an ensemble in the case of the
the relationship betweeR and q is essential in ensemble Mmajority vote has been analyzed quantitatively.
learning. To illustrate this, Fig. 17 shows the relationship Figures 4, 8, and 12 also show that the ensemble gener-
more clearly by takingR and q as axes. In this figure, the alization errorse, by the majority vote are larger than those
curve for AdaTron learning is located in the bottom. That is,by the weight mean in the case &< =. In both perceptron
of the three learning rules, the one offering the smaltest learning and AdaTron learning, the relationship betweef 1/
when compared witlR is AdaTron learning. In other words, andey shows a straight line and an upwards-convex curve in
the learning rule in which the rising af is the slowest and the case of the weight mean and the majority vote, respec-
the variety among students is maintained best is AdaTrotively. The ensemble generalization erregsin the cases of
learning. the majority vote and the weight mean agree with each other
These characteristics can be understood from the updagé a largeK limit. This fact agrees with the description in
expression of each rule. Equatio#0) means that an update Ref.[6]. Therefore the weight mean is superior than the ma-
by Hebbian learning depends on only the output(sgof a  jority vote especially in the case of a smill Moreover, it is
teacher. That is, all students are updated identically at aghown thate, for a largeK limit compared with that oK
time steps. Therefore the similarity of students increases rap=1 is about 0.99, 0.72, and 0.68 times in Hebbian, percep-
idly in Hebbian learning. On the other hand, the update byfron and AdaTron learning, respectively. It has been con-
perceptron learning equals that of Hebbian learning timedirmed that ensemble has the strongest effect in AdaTron
O(-uwv), as shown in Eq(45). Students whose outputs are learning among three learning rules.
opposite to that of a teacher change their connection weights.
At least in the initial period of learning, students whose out-
put is opposite to that of a teacher and students whose output
is the same as that of a teacher both exist. As a result, stu- This paper discussed ensemble learningkohonlinear
dents that change their connection weights and students whgerceptrons, which determine their outputs by sign functions
do not change their connection weights both exist, leading tavithin the framework of online learning and statistical me-
the fact that variety among students by perceptron learning ishanics. One purpose of statistical learning theory is to theo-
better maintained than by Hebbian learning. The update byetically obtain the generalization error. In this paper, we
AdaTron learning is given in Eq46). This can be rewritten have shown that the ensemble generalization error can be
as f(sgn(v),u)=|u|O©(-uv)sgr(v). That is, the update by calculated by using two order parameters, that is the similar-
AdaTron learning equals that of perceptron learning timesty between the teacher and a student, and the similarity
|ul, which depends on the students. Therefore the varietgmong students. The differential equations that describe the
among students by AdaTron learning is still better main-dynamical behaviors of these order parameters have been
tained. derived in the case of general learning rules. The concrete
In the discussion above, the reason why the degree dbrms of these differential equations have been derived ana-
improvement by ensemble learning is small in Hebbianlytically in the cases of three well-known rules: Hebbian
learning and large in AdaTron learning as shown in Fig. 1, 4]Jearning, perceptron learning, and AdaTron learning. We cal-
5, 8, 9, and 12 has been explained. AdaTron learning origieulated the ensemble generalization errors of these three
nally featured the fastest asymptotic characteristic of theules by using the results determined by solving their differ-
three learning rulef9]. However, it has a disadvantage that ential equations. As a result, these three rules have different
the learning is slow at the beginning; that is, the generalizacharacteristics in their affinity for ensemble learning, that is,

0 02 04 06 038 1
Similarity R

VI. CONCLUSION
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“maintaining variety among students.” The results show that
AdaTron learning is superior to the other two rules with re-  (fifx) = f duUys dv ps(Uy, U, v)O (= uw) O (= uv)
spect to that affinity.
= 2J va __DxH(2), (B5)
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V1-g)(1+q-2R)

here

APPENDIX A: SAMPLE AVERAGES

OF HEBBIAN LEARNING and the definitions oH(u) andDx are
The update procedure for Hebbian learning is *
H(u) = J Dx, (B7)
f(sgr(v),u) = sgrv). (A1) u
Using this expressior{f,uy), (fw), and(fﬁ) in the case of
Hebbian learning can be obtained as follows by executing _ dx x_2
Egs.(27)—(29) analytically[9,17]: Dx= \’,Erex "9 (B8)

2R 2
(fu = Nt (fwy = \/;, (fH=1. (A2)
Nemw APPENDIX C: SAMPLE AVERAGES

In addition to these results, we have derivégl,,) and OF ADATRON LEARNING

(fidie). Since Eq.(40) is independent ofi, we obtain The update procedure for AdaTron learning is

2R
(frue) = () = B (A3) f(sgr(v),u) = —uO(- uv). (C1

_ o Using this expression(f,uy), (fiv), and(fﬁ) in the case of
(fifie) = ([sgriv) ) = 1. (A4) AdaTron learning can be obtained as follows by executing
Egs.(27)—(29) analytically[9,17]:

APPENDIX B: SAMPLE AVERAGES

OF PERCEPTRON LEARNING (fu) = - zf DuuZH( &2) (C2)
/1-R
The update procedure for perceptron learning is ° '
f(sgriv),u) = O(- u)sgriv). (B1) 1 ./ R 1 S
Using this expression(f,uy), (fiv), and(fﬁ) in the case of __;COt V1-R2 " ;RVl R €3
perceptron learning can be obtained as follows by executing
Egs.(27)—(29) analytically[9,17]: (1-R)2
R-1 1-R (f) = ———— +R(frup, (C4)
(i =—=, (fw)=—=, (B2) ™
V2 N2
— f2) = = (fuy). C5
o 0 Rl) ~ 1 _1\3’1_R2 < k> < Kk k> ( )
(fo=2 . DuH el tanT o (B3) In addition to these results, we have derivdgl,,) and

(fif). Using Eg.(C1), (fiue) and (ff,,) in the case of

In addition to these results, we have derivégly,) and  AdaTron learning are obtained as follows by executing Egs.
(fif). Using Eq.(B1), (fu) and (f,f,) in the case of (33) and(35) analytically:
perceptron learning are obtained as follows by executing

Egs.(33) and(35 lytically:
as ( ) an ( ) ana ytlca y <fkukr> = _f dukdukrdvp:,,(uk,uk/,v)e(— Ukl))ukuk/

(fue) = J dudu, dvps(Uy, U, v)O (= uw)sgrv) Uy 1+q o o
_ / 2
=——RJ1-R —2qf va ___Dx¥,

R- B4 ™ 0 Ro/V1-R?

pry \“’y 7T 1 ( ) (C6)

o]

1\

N
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2R(1+q-2R?) [~ ”
<fkfk’> = f dUdUkdeUk/Uk/ p3(uk, Ukr,U),e(_ Ukv)e(_ Uk/l)) - %J DUUf — DXXH(Z)
N 0 Ru/\V1-R

(1—q)2(1+q—2R2)< [(1+9(1-R) ) - -

= -R +2R? f Duv? J ___DxH(2), (C?)

2m(1-R)¥? 1-q 0 Ro/\1-R2
+2(q- Rz)foc Dva Dxx2H(2) where the definitions of, H(u), andDx are Eqs(B6), (B7),
0 Ro1-R and (B8), respectively.
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