
Analysis of ensemble learning using simple perceptrons based on online learning theory

Seiji Miyoshi,1,* Kazuyuki Hara,2 and Masato Okada3

1Department of Electronic Engineering, Kobe City College of Technology, Gakuenhigashi-machi 8-3, Nishi-ku, Kobe 651-2194, Japan
2Department of Electronics and Information Engineering, Tokyo Metropolitan College of Technology,

Higashi-oi 1-10-40, Shinagawa-ku, Tokyo, 140-0011 Japan
3Department of Complexity Science and Engineering, Division of Transdisciplinary Sciences, Graduate School of Frontier Sciences,

The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8562 Japan;
Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan;

and Intelligent Cooperation and Control, PRESTO, Japan Science and Technology Agency, Hirosawa 2-1, Wako, Saitama, 351-0198
Japan

sReceived 27 May 2004; published 15 March 2005d

Ensemble learning ofK nonlinear perceptrons, which determine their outputs by sign functions, is discussed
within the framework of online learning and statistical mechanics. One purpose of statistical learning theory is
to theoretically obtain the generalization error. This paper shows that ensemble generalization error can be
calculated by using two order parameters, that is, the similarity between a teacher and a student, and the
similarity among students. The differential equations that describe the dynamical behaviors of these order
parameters are derived in the case of general learning rules. The concrete forms of these differential equations
are derived analytically in the cases of three well-known rules: Hebbian learning, perceptron learning, and
AdaTronsadaptive perceptrond learning. Ensemble generalization errors of these three rules are calculated by
using the results determined by solving their differential equations. As a result, these three rules show different
characteristics in their affinity for ensemble learning, that is “maintaining variety among students.” Results
show that AdaTron learning is superior to the other two rules with respect to that affinity.
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I. INTRODUCTION

Ensemble learning has recently attracted the attention of
many researchersf1–6g. Ensemble learning means to com-
bine many rules or learning machinessstudents in the follow-
ingd that perform poorly. Theoretical studies analyzing the
generalization performance by using statistical mechanics
f7,8g have been performed vigorouslyf4–6g.

Hara and Okadaf4g theoretically analyzed the case in
which students are linear perceptrons. Their analysis was
performed with statistical mechanics, focusing on the fact
that the output of a new perceptron, whose connection
weight is equivalent to the mean of those of students, is
identical to the mean outputs of students. Krogh and Sollich
f5g analyzed ensemble learning of linear perceptrons with
noises within the framework of batch learning. They showed
that the generalization performance can be optimized by
choosing the best size of learning samples for a largeK limit,
whereK is the number of students, and that the generaliza-
tion performance can be improved by dividing learning
samples in the noisy situation whenK is finite.

On the other hand, Hebbian learning, perceptron learning,
and AdaTronsadaptive perceptrond learning are well known
as learning rules for a nonlinear perceptron, which decides its
output by sign functionf9–12g. Urbanczikf6g analyzed en-
semble learning of nonlinear perceptrons that decide their
outputs by sign functions for a largeK limit within the
framework of online learningf13g. He treated a generalized

learning rule that he termed a “soft version of perceptron
learning,” which includes both Hebbian learning and percep-
tron learning as special cases, and discussed it from the
viewpoint of generalization error. As a result, he showed that
though an ensemble usually has superior performance to a
single student, an ensemble has no special advantage in the
optimized case within the framework of the soft version of
perceptron learning.

Though Urbanczik discussed ensemble learning of nonlin-
ear perceptrons within the framework of online learning, he
treated only the case in which the numberK of students is
large enough. Determining differences among ensemble
learnings with Hebbian learning, perceptron learning, and
AdaTron learningsthree typical learning rulesd is a very at-
tractive problem.

Based on the past studies, we discuss ensemble learning
of K nonlinear perceptrons, which decide their outputs by
sign functions within the framework of online learning and
finite K f14,15g. First, we show that an ensemble generaliza-
tion error ofK students can be calculated by using two order
parameters: one is a similarity between a teacher and a stu-
dent, the other is a similarity among students. Next, we de-
rive differential equations that describe dynamical behaviors
of these order parameters in the case of general learning
rules. After that, we derive concrete differential equations
about three well-known learning rules: Hebbian learning,
perceptron learning, and AdaTron learning. We calculate the
ensemble generalization errors by using results obtained
through solving these equations numerically. Two methods
are treated to decide an ensemble output. One is the majority
vote of students, and the other is an output of a new percep-
tron whose connection weight equals the mean of those of*Electronic address: miyoshi@kobe-kosen.ac.jp

PHYSICAL REVIEW E 71, 036116s2005d

1539-3755/2005/71s3d/036116s11d/$23.00 ©2005 The American Physical Society036116-1



students. As a result, we show that these three learning rules
have different properties with respect to an affinity for en-
semble learning, and AdaTron learning, which is known to
have the best asymptotic propertyf9–12g, gives the largest
improvement by ensemble among the three learning rules.

II. MODEL

Each student treated in this paper is a perceptron that
decides its output by a sign function. An ensemble ofK
students is considered. Connection weights of students are
J1,J2, . . . ,JK. Jk=sJk1, . . . ,JkNdT, k=1,2, . . . ,K, and inputx
=sx1, . . . ,xNdT areN dimensional vectors. Each componentxi

of x is assumed to be an independent random variable that
obeys the Gaussian distributionNs0,1/Nd. Each component
of Jk

0, that is the initial value ofJk, is assumed to be gener-
ated according to the Gaussian distributionNs0,1d indepen-
dently. Thus

kxil = 0,ksxid2l =
1

N
, s1d

kJki
0 l = 0,ksJki

0 d2l = 1, s2d

where k·l denotes the average. Each student’s output is
sgnsu1l1d ,sgnsu2l2d , . . . ,sgnsuKlKd where

sgnsuld = H+ 1, ul ù 0,

− 1, ul , 0,
s3d

uklk = Jk ·x. s4d

Here, lk denotes the length of studentJk. This is one of the
order parameters treated in this paper and will be described
in detail later. In this paper,uk is called a normalized internal
potential of a student.

The teacher is also perceptron that decides its output by a
sign function. The teacher’s connection weight isB. In this
paper,B is assumed to be fixed whereB=sB1, . . . ,BNdT is
also anN-dimensional vector. Each componentBi is assumed
to be generated according to the Gaussian distribution
Ns0,1d independently. Thus

kBil = 0, ksBid2l = 1. s5d

The teacher’s output is sgnsvd where

v = B ·x. s6d

Here, v represents an internal potential of the teacher. For
simplicity, the connection weight of a student and that of the
teacher are simply called student and teacher, respectively.

In this paper the thermodynamic limitN→` is also
treated. Therefore

uxu = 1, uBu = ÎN, uJk
0u = ÎN, s7d

where u ·u denotes a vector norm. Generally, a norm of stu-
dent uJku changes as the time step proceeds. Therefore the
ratio lk of the norm toÎN is considered and is called a length
of studentJk. That is,

uJku = lkÎN, s8d

wherelk is one of the order parameters treated in this paper.
The common inputx is presented to the teacher and all

students in the same order.Within the framework of online
learning, the update can be expressed as follows:

Jk
m+1 = Jk

m + fk
mxm, s9d

fk
m = f„sgnsvmd,uk

m
…, s10d

wherem denotes time step, andf is a function determined by
learning rule.

In this paper, two methods are treated to determine an
ensemble output. One is the majority vote ofK students,
which means an ensemble output is decided to be11 if
students whose outputs are11 exceed the number of stu-
dents whose outputs are21, and21 in the opposite case.

Another method for deciding an ensemble output is adopt-
ing an output of a new perceptron whose connection weight
is the mean of the weights ofK students. This method is
simply called the weight mean in this paper.

III. THEORY

In this paper, the majority vote and the weight mean are
treated to determine an ensemble output.We use

e = US− B ·xo
k=1

K

sgnsJk ·xdD , s11d

and

e = UX− B ·xSo
k=1

K

JkD ·xC s12d

as errore for the majority vote and the weight mean, respec-
tively. Here,Uszd=1 for z.0 and 0 otherwise.e, x andJk

denoteem, xm, and Jk
m, respectively. However, superscripts

m, which represent time steps, are omitted for simplicity.
Generalization erroreg is defined as the average of errore

over the probability distributionpsxd of input x. The gener-
alization erroreg can be regarded as the probability that an
ensemble output disagrees with that of the teacher for a new
input x. One purpose of statistical learning theory is to theo-
retically obtain generalization error. In the case of a majority
vote, using Eqs.s4d, s6d, ands11d, we obtain

e = US− vo
k=1

K

sgnsukdD . s13d

In the case of a weight mean, using Eqs.s4d, s6d, and s12d,
we obtain

e = US− vo
k=1

K

ukD . s14d

That is, errore can be described ase=eshukj ,vd by using a
normalized internal potentialuk for the student and an inter-
nal potentialv for the teacher in both cases. Therefore the
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generalization erroreg can be also described as

eg =E dxpsxde =E p
k=1

K

dukdvpshukj,vdeshukj,vd s15d

by using the probability distributionpshukj ,vd of uk and v.
Since the thermodynamic limitN→` is also considered in
this paper,uk andv obey the multiple Gaussian distribution
based on the central limit theorem. The discussion in this
paper falls within the framework of online learning. There-
fore since an inputx and a studentJk have no correlation
with each other, from Eq.s4d, the mean and the variance of
uk are

kukl = 0, ksukd2l = 1, s16d

respectively. In the same manner, since an inputx and a
teacherB have no correlation with each other, from Eq.s6d,
the mean and the variance ofv are

kvl = 0, kv2l = 1, s17d

respectively. From these, all diagonal components of the co-
variance matrixS of pshukj ,vd equal unity.

Let us discuss a direction cosine between connection
weights as preparation for obtaining nondiagonal compo-
nents. First,Rk is defined as a direction cosine between a
teacherB and a studentJk. That is,

Rk ;
B ·Jk

uBuuJku
=

1

lkN
o
i=1

N

BiJki. s18d

Rk is called the similaritysoverlap in other wordsd between
teacher and student in the following.Rk is the second order
parameter treated in this paper. Next,qkk8 is defined as a
direction cosine between a studentJk and another student
Jk8. That is,

qkk8 ;
Jk ·Jk8

uJkuuJk8u
=

1

lklk8N
o
i=1

N

JkiJk8i , s19d

wherekÞk8. qkk8 is called the similarity among students in
the following, andqkk8 is the third order parameter treated in
this paper.

Covariance between an internal potentialv of a teacherB
and a normalized internal potentialuk of a studentJk equals
a similarity Rk between a teacherB and a studentJk as fol-
lows:

kvukl =K 1

lk
o
i=1

N

Bixio
j=1

N

JkjxjL = Rk. s20d

Covariance between a normalized internal potentialuk of a
studentJk and a normalized internal potentialuk8 of another
studentJk8 equals a similarityqkk8 among students as fol-
lows:

kukuk8l =K 1

lklk8
o
i=1

N

Jkixio
j=1

N

Jk8 jxjL = qkk8. s21d

Therefore Eq.s15d can be rewritten as

eg =E p
k=1

K

dukdvpshukj,vdeshukj,vd, s22d

pshukj,vd =
1

s2pdsk+1d/2uSu1/2expS−
shukj,vdS−1shukj,vdT

2
D ,

s23d

S =1
1 q12 . . . q1K R1

q21 1 � ] ]

] � � qK−1,K ]

qK1 . . . qK,K−1 1 RK

R1 . . . . . . RK 1
2 . s24d

As a result, a generalization erroreg can be calculated if all
similaritiesRk andqkk8 are obtained. Let us thus discuss dif-
ferential equations that describe dynamical behaviors of
these order parameters. Differential equations regardinglk
and Rk for general learning rules have been obtained based
on self-averaging as followsf9g:

dlk
dt

= kfkukl +
kfk

2l
2lk

, s25d

dRk

dt
=

kfkvl − kfkuklRk

lk
−

Rk

2lk
2kfk

2l, s26d

wherek·l stands for the sample average. That is,

kfkukl =E dukdvp2suk,vdf„sgnsvd,uk…uk, s27d

kfkvl =E dukdvp2suk,vdf„sgnsvd,uk…v, s28d

kfk
2l =E dudvp2suk,vdff„sgnsvd,uk…g2, s29d

p2suk,vd =
1

2puS2u1/2expS−
suk,vdS2

−1suk,vdT

2
D , s30d

S2 = S 1 Rk

Rk 1
D . s31d

Next, let us derive a differential equation regardingqkk8
for the general learning rule. Considering a studentJk and
another studentJk8 and rewriting aslk

m→ lk, lk
m+1→ lk+dlk,

qkk8
m →qkk8, qkk8

m+1→qkk8+dqkk8, and 1/N→dt, a differential
equation regardingq is obtained as followsf4g:

dqkk8

dt
=

kfk8ukl − qkk8kfk8uk8l

lk8
+

kfkuk8l − qkk8kfkukl

lk
+

kfkfk8l

lklk8

−
qkk8

2 S kfk
2l

lk
2 +

kfk8
2 l

lk8
2 D , s32d

from Eqs.s9d, s19d, ands25d and self-averaging, where
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kfkuk8l =E dukduk8dvp3suk,uk8,vdf„sgnsvd,uk…uk8, s33d

kfk8ukl =E dukduk8dvp3suk,uk8,vdf„sgnsvd,uk8…uk, s34d

kfkfk8l =E dukduk8dvp3suk,uk8,vdf„sgnsvd,uk…f„sgnsvd,uk8…,

s35d

p3suk,uk8,vd =
1

s2pd3/2uS3u1/2

3expS−
suk,uk8,vdS3

−1suk,uk8,vdT

2
D , s36d

S3 = 1 1 qkk8 Rk

qk8k 1 Rk8

Rk Rk8 1
2 . s37d

IV. RESULT

A. Conditions of analytical calculations

As described above, in this paper each component of ini-
tial value Jk

0 of studentJk and teacherB is generated inde-
pendently according to the Gaussian distributionNs0,1d,
and the thermodynamic limitN→` is considered. Therefore
all Jk

0 andB are orthogonal to each other. That is,

Rk
0 = 0, qkk8

0 = 0. s38d

From Eq.s38d and symmetry of students, we can write

kfkuk8l = kfk8ukl, kfkfk8l = kfk8fkl s39d

in Eq. s32d. From Eq.s38d and symmetry among students,
we omit subscriptsk,k8 from order parameterslk, Rk, and
qkk8 in Eqs. s25d–s37d and write them asl,R, and q. In the
following sections, we analytically obtain five sample aver-
ageskfkukl, kfkvl, kfk

2l, kfkuk8l, andkfkfk8l concretely, which
are necessary to solve Eqs.s25d–s37d with respect to typical
learning rules under the conditions given in Eqs.s38d and
s39d. R andq are obtained by solving the above sample av-
erages and Eqs.s25d, s26d, s32d, and s38d numerically. We
obtain numerical ensemble generalization errorseg by calcu-
lating Eq.s22d with the obtainedR andq.

B. Hebbian learning

The update procedure for Hebbian learning is

f„sgnsvd,u… = sgnsvd. s40d

Using this expression,kfkukl, kfkvl, andkfk
2l in the case of

Hebbian learning can be obtained by executing Eqs.
s27d–s29d analytically f9,17g ssee Appendix Ad. In addition

to these results, we have derivedkfkuk8l andkfkfk8l ssee Ap-
pendix Ad.

R and q have been obtained by solving Eqs.s25d, s26d,
s32d, s38d, ands39d and the derived sample averages numeri-
cally. We have obtained numerical ensemble generalization
errorseg in the case ofK=3 by using Eqs.s22d–s24d and the
aboveR andq. Figure 1 shows the results. In this figure, MV
and WM indicate the majority vote and the weight mean,
respectively. Numerical integrations of Eq.s22d in theoretical
calculations have been executed by using the six-point
closed Newton-Cotes formula. In the computer simulation,
N=104 and ensemble generalization errors have been ob-
tained through tests using 105 random inputs at each time
step. In this figure, the result of theoretical calculations of
K=1 is also shown to clarify the effect of the ensemble. This
figure shows that the ensemble generalization errors obtained
by theoretical calculation explain the computer simulation
quantitatively.

Figures 2 and 3 show the results of computer simulations
whereN=103, K=1, 3, 11, 31 untilt=104 in order to inves-
tigate asymptotic behaviors of generalization errors.
Asymptotic behavior of generalization error in Hebbian
learning in the case of the numberK of students at unity is

FIG. 1. Dynamical behaviors of ensemble generalization error
eg in Hebbian learning.

FIG. 2. Asymptotic behavior of generalization error of majority
vote in Hebbian learning. Computer simulations, except for the
solid line. Asymptotic order of ensemble learning is the same as that
at K=1.
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Ost−1/2d f9g. Asymptotic orders of the generalization error in
the case of ensemble learning are considered equal to those
of K=1, since properties ofK=3, 11, 31 are parallel to those
of K=1 in these figures.

To clarify the relationship betweenK and the effect of
ensemble, we have obtained theoretical ensemble generaliza-
tion errors for various values ofK. Here, it is difficult to
execute numerical integration of Eq.s22d whenK.3 by the
Newton-Cotes formula used in the calculations for Fig. 1.
Therefore the Metropolis method, which is a type of Monte
Carlo method, has been used. We then orthogonalized the
variables of integration to eliminate the calculation of in-
verse matrices of Eq.s24d. That is,

uk = auk + bû+ cv, k = 1,2, . . . ,K, s41d

whereuk, uk, û, andv obey the Gaussian distributionNs0,1d,
and uk, û, andv have no correlation with each other. Con-
sidering that subscriptsk,k8 have been omitted from order
parametersRk, qkk8, and Eq.s24d, we obtain

a = Î1 − q, b = Îq − R2, c = R. s42d

By using thesea, b, andc, we can rewrite Eqs.s22d–s24d as
follows:

eg =E p
k=1

K

dukp1sukddûp1sûddvp1svdeshauk + bû+ cvj,vd,

s43d

p1sud =
1

s2pd1/2expS−
u2

2
D . s44d

These operations orthogonalized the variables of integra-
tion in exchange for their number having been increased
from K+1 to K+2. The multiple Gaussian distribution func-
tion pshukj ,vd can be rewritten as products of simple Gauss-
ian distribution functionsp1s·d by this orthogonalization.
Thus calculations of inverse matrices of Eq.s24d become

unnecessary. These facts have made it easy to perform the
numerical calculations of the generalization error for a large
K.

Figure 4 shows the results obtained by the Metropolis
method using the values ofR and q calculated numerically
for Hebbian learning and Eqs.s42d–s44d. Calculations have
been executed forK=1, 3, 5, 7, 9, 11, 13, 21, 31, and 51 in
both the majority votesMV d and the weight meansWMd.
The number of MonteCarlo steps is 109. These theoretical
results are fitted to two quadratic curves. In this figure, the
results of computer simulations whereN=104, K=1, 3, 5, 7,
9, 11, 13, 21, 31, and 51 have also been drawn for compari-
son with the theoretical calculations. In the computer simu-
lations, ensemble generalization errors have been obtained
through tests using 106 random inputs. The figures show the
values of t=50 for both theoretical calculations and com-
puter simulations, and this is the time for which is considered
that the learnings are sufficiently within the asymptotic re-
gions with respect to Fig. 2 and 3. Here, since the relation-
ship between 1/K and ensemble generalization errors shows
a straight linef4g in the case of linear perceptrons, the ab-
scissa is 1/K in Fig. 4. The ordinates have been normalized
by the theoretical ensemble generalization error ofK=1 and
t=50.

C. Perceptron learning

The update procedure for perceptron learning is

f„sgnsvd,u… = Us− uvdsgnsvd. s45d

Using this expression,kfkukl, kfkvl, and kfk
2l in the case of

perceptron learning can be obtained by executing Eqs.
s27d–s29d analyticallyf9,17g ssee Appendix Bd. In addition to
these results, we have derivedkfkuk8l andkfkfk8l ssee Appen-
dix Bd.

In the same manner as Hebbian learning,R and q have
been obtained by solving Eqs.s25d, s26d, s32d, s38d, ands39d,
and the derived sample averages numerically. We have ob-
tained numerical ensemble generalization errorseg in the

FIG. 3. Asymptotic behavior of generalization error of weight
mean in Hebbian learning. Computer simulations, except for the
solid line. Asymptotic order of ensemble learning is the same as that
at K=1.

FIG. 4. Relationship betweenK and effect of ensemble in Heb-
bian learning. Ensemble generalization erroreg for a largeK limit is
about 0.99 times that ofK=1.
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case ofK=3 by using Eqs.s22d–s24d and the aboveR andq.
Figure 5 shows the results. This figure shows that the en-
semble generalization errors obtained by theoretical calcula-
tion explain the computer simulation quantitatively.

Figures 6 and 7 show the results of computer simulations
whereN=103, K=1, 3, 11, 31 untilt=104 in order to inves-
tigate asymptotic behaviors of generalization errors. The ef-
fect of ensemble is maintained asymptotically. Asymptotic
behavior of generalization error in perceptron learning in the
case of the numberK of students at unity isOst−1/3d f9g. Note
that though this asymptotic behavior is worse than that of
Hebbian learning, perceptron learning is robust to the input
distribution. On the contrary, Hebbian learning fails when-
ever the teacher vector of a linearly separable rule is not
aligned with one of the principle components of the input
distribution f16g. Since properties ofK=3,11,31 are parallel
to those ofK=1 in Figs. 6 and 7, asymptotic orders of the
generalization error in the case of ensemble learning are con-
sidered equal to those ofK=1,

To clarify the relationship betweenK and the effect of
ensemble, we have obtained theoretical ensemble generaliza-
tion errors for various values ofK. In the same manner as
Hebbian learning, Fig. 8 shows the results obtained by the

Metropolis method using the values ofR and q calculated
numerically for perceptron learning and Eqs.s42d–s44d.

D. AdaTron learning

The update procedure for AdaTron learning is

f„sgnsvd,u… = − uUs− uvd. s46d

Using this expression,kfkukl, kfkvl, and kfk
2l in the case of

AdaTron learning can be obtained by executing Eqs.
s27d–s29d analyticallyf9,17g ssee Appendix Cd. In addition to
these results, we have derivedkfkuk8l and kfkfk8l. Using Eq.
s46d, kfkuk8lkfkfk8l and in the case of AdaTron learning are
obtained as follows by executing Eqs.s33d ands35d analyti-
cally.

In the same manner as Hebbian learning,R and q have
been obtained by solving Eqs.s25d, s26d, s32d, s38d, ands39d,
and the derived sample averages numerically. We have ob-
tained numerical ensemble generalization errorseg in the
case ofK=3 by using Eqs.s22d–s24d and the aboveR andq.

FIG. 5. Dynamical behaviors of ensemble generalization error
eg in perceptron learning.

FIG. 6. Asymptotic behavior of generalization error of majority
vote in perceptron learning. Computer simulations, except for the
solid line. Asymptotic order of ensemble learning is the same as that
at K=1.

FIG. 7. Asymptotic behavior of generalization error of weight
mean in perceptron learning. Computer simulations, except for the
solid line. Asymptotic order of ensemble learning is the same as that
at K=1.

FIG. 8. Relationship betweenK and effect of ensemble in per-
ceptron learning. Ensemble generalization erroreg for a largeK
limit is about 0.72 times that ofK=1.
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Figure 9 shows the results. This figure shows that the en-
semble generalization errors obtained by theoretical calcula-
tion explain the computer simulation quantitatively.

Figures 10 and 11 show the results of computer simula-
tions whereN=103, K=1, 3, 11, 31 untilt=104 in order to
investigate asymptotic behaviors of generalization errors. Ef-
fect of ensemble is maintained asymptotically. Asymptotic
behavior of generalization error in AdaTron learning in the
case of the numberK of students at unity isOst−1d f9,12g.
Asymptotic orders of the generalization error in the case of
ensemble learning are considered equal to those ofK=1,
since properties ofK=3, 11, 31 are parallel to those ofK
=1 in these figures.

To clarify the relationship betweenK and the effect of
ensemble, we have obtained theoretical ensemble generaliza-
tion errors for various values ofK. In the same manner as
Hebbian learning, Fig. 12 shows the results obtained by the
Metropolis method using the values ofR and q calculated
numerically for perceptron learning and Eqs.s42d–s44d.

V. DISCUSSION

Figures 1, 4, 5, 8, 9, and 12 show that the generalization
errors of the three learning rules are all improved by en-

semble learning. However, the degree of improvement is
small in Hebbian learning and large in AdaTron learning.
First, we discuss the reason for this difference in the follow-
ing.

Each student moves towards teacher as learning proceeds.
Therefore similaritiesRk and qkk8 increase and approach
unity, leading toRk andqkk8 becoming less irrelevant to each
other. For example whenRk=Rk8=1, qkk8 cannot beÞ1 since
a teacherB, a studentJk, and another studentJk8 have the
same direction. ThusRk andqkk8 are under a certain relation-
ship restraint with each other. Whenqkk8 is relatively smaller
when compared withRk, variety among students is further
maintained and the effect of the ensemble can be considered
as large. On the contrary, afterqkk8 becomes unity, a student
Jk and another studentJk8 are the same and there is no merit
in combining them.

Let us explain these considerations intuitively by using
Fig. 13. Bothsad and sbd show the relationship among two
studentsJ1, J2 and a teacherB when learning has proceeded
to some degree from the condition that the students and the
teacher have no correlation. Then, as shown in Fig. 13, stu-

FIG. 9. Dynamical behaviors of ensemble generalization error
eg in AdaTron learning. Improvement ofeg by increasingK from 1
to 3 is largest of the three learning rules.

FIG. 10. Asymptotic behavior of generalization error of major-
ity vote in AdaTron learning. Computer simulations, except for the
solid line. Asymptotic order of ensemble learning is the same as that
at K=1.

FIG. 11. Asymptotic behavior of generalization error of weight
mean in AdaTron learning. Computer simulations, except for the
solid line. Asymptotic order of ensemble learning is the same as that
at K=1.

FIG. 12. Relationship betweenK and effect of ensemble in Ada-
Tron learning. Ensemble generalization erroreg for a largeK limit
is about 0.68 times that ofK=1.
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dents must distribute to points the same distance from the
teacher. That is, the similarityR1 of the teacher and a student
J1 equals the similarityR2 of the teacher and a studentJ2 in
both sad and sbd. Here,sad shows the case in which students
are unlike each other—in other words the variety among stu-
dents is large, that is,q is small. In this case, it is obvious
that a mean vector ofJ1 andJ2 is closer to the teacherB than
eitherJ1 or J2. Therefore, a mean vectors1/Kdok=1

K Jk of the
students’ connection weights can closely approximate the
connection weight vectorB of the teacher in cases likesad. In
addition, a combination method other than a mean of stu-
dents, e.g., the majority vote of students, must approximate
the teacher better than each student can do alone in cases like
sad. In this case, the effect of ensemble learning is strong. On
the contrary, Fig. 13sbd shows the case in which students are
similar to each other—in other words, the variety among
students is small, meaningq is large. In this case, the signifi-
cance of combining two students is small since their outputs
are almost always the same. Therefore the effect of ensemble
learning is small whenq is large, as in Fig. 13sbd. Thus the
relationship betweenRk andqkk8 is essential to know in en-
semble learning.

Figure 14 shows a comparison between the theoretical
results regarding the dynamical behaviors ofR andq of Heb-
bian learning, which are obtained by solving Eqs.s25d, s26d,
s32d, s38d, s39d, andsA2d–sA4d numerically and by computer
simulation sN=105d. In the same manner, Fig. 15 shows a
comparison between the theoretical results regarding the dy-
namical behaviors ofR andq of perceptron learning, which
are obtained by solving Eqs.s25d, s26d, s32d, s38d, s39d, and
sB2d–sB5d numerically and by computer simulationsN

=105d. Figure 16 shows a comparison between the theoreti-
cal results regarding the dynamical behaviors ofR andq of
AdaTron learning, which are obtained by solving Eqs.s25d,
s26d, s32d, s38d, s39d, and sC3d–sC7d numerically and by
computer simulationsN=105d. In these figures, the theoreti-
cal results and the computer simulations closely agree with
each other. That is, the derived theory explains the computer
simulation quantitatively. Figure 14 shows thatq rises more
rapidly than R in Hebbian learning; in other words,q is
relatively large when compared withR, meaning the variety
among students disappears rapidly in Hebbian learning. Fig-
ure 15 shows thatq is smaller thanR in the early period of
learning st,4.0d, which means perceptron learning main-
tains the variety among students for a longer time than Heb-
bian learning. Figure 16 shows thatq is relatively smaller
when compared withR than in the cases of Hebbian learning
and perceptron learning. This means AdaTron learning main-
tains variety among students most out of these three learning
rules.

Figures 14–16 show thatq is relatively small when com-
pared withR in the case of AdaTron learning than in Heb-

FIG. 13. Variety among students.

FIG. 14. Dynamical behaviors ofR andq in Hebbian learning.
Here,q rises more rapidly thanR, which means the variety among
students disappears rapidly in Hebbian learning.

FIG. 15. Dynamical behaviors ofR andq in perceptron learning.
Here,q is smaller thanR in the early period of learningst,4.0d.
Perceptron learning maintains the variety among students for a
longer time than Hebbian learning.

FIG. 16. Dynamical behaviors ofR andq in AdaTron learning.
Here, q is relatively smaller when compared withR than in the
cases of Hebbian learning or perceptron learning. AdaTron learning
maintains variety among students most out of these three learning
rules.
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bian learning and perceptron learning. As described before,
the relationship betweenR and q is essential in ensemble
learning. To illustrate this, Fig. 17 shows the relationship
more clearly by takingR and q as axes. In this figure, the
curve for AdaTron learning is located in the bottom. That is,
of the three learning rules, the one offering the smallestq
when compared withR is AdaTron learning. In other words,
the learning rule in which the rising ofq is the slowest and
the variety among students is maintained best is AdaTron
learning.

These characteristics can be understood from the update
expression of each rule. Equations40d means that an update
by Hebbian learning depends on only the output sgnsvd of a
teacher. That is, all students are updated identically at all
time steps. Therefore the similarity of students increases rap-
idly in Hebbian learning. On the other hand, the update by
perceptron learning equals that of Hebbian learning times
Us−uvd, as shown in Eq.s45d. Students whose outputs are
opposite to that of a teacher change their connection weights.
At least in the initial period of learning, students whose out-
put is opposite to that of a teacher and students whose output
is the same as that of a teacher both exist. As a result, stu-
dents that change their connection weights and students who
do not change their connection weights both exist, leading to
the fact that variety among students by perceptron learning is
better maintained than by Hebbian learning. The update by
AdaTron learning is given in Eq.s46d. This can be rewritten
as f(sgnsvd ,u)= uuuUs−uvdsgnsvd. That is, the update by
AdaTron learning equals that of perceptron learning times
uuu, which depends on the students. Therefore the variety
among students by AdaTron learning is still better main-
tained.

In the discussion above, the reason why the degree of
improvement by ensemble learning is small in Hebbian
learning and large in AdaTron learning as shown in Fig. 1, 4,
5, 8, 9, and 12 has been explained. AdaTron learning origi-
nally featured the fastest asymptotic characteristic of the
three learning rulesf9g. However, it has a disadvantage that
the learning is slow at the beginning; that is, the generaliza-

tion error is larger than for the other two learning rules in the
period of t,6. This paper shows that the fastest asymptotic
characteristic of AdaTron learning is maintained in ensemble
learning and that AdaTron learning has a good affinity with
ensemble learning in regard to “the variety among students”
and the disadvantage of the early period can be improved by
combining it with ensemble learning.

From the perspective of the difference between the major-
ity vote and the weight mean, Figs. 1, 4, 5, 8, 9, and 12 show
that the improvement by weight mean is larger than that by
majority vote in all three learning rules. Improvement in the
generalization error by averaging connection weights of vari-
ous students can be understood intuitively because the mean
of students is close to that of the teacher in Fig. 13sad. The
reason why the improvement in the majority vote is smaller
than that in the weight mean is considered to be that the
variety among students cannot be utilized as effectively by
the majority vote as by the weight mean. However, the ma-
jority vote can determine an ensemble output only using out-
puts of students, and is easy to implement. It is therefore
significant that the effect of an ensemble in the case of the
majority vote has been analyzed quantitatively.

Figures 4, 8, and 12 also show that the ensemble gener-
alization errorseg by the majority vote are larger than those
by the weight mean in the case ofK,`. In both perceptron
learning and AdaTron learning, the relationship between 1/K
andeg shows a straight line and an upwards-convex curve in
the case of the weight mean and the majority vote, respec-
tively. The ensemble generalization errorseg in the cases of
the majority vote and the weight mean agree with each other
at a largeK limit. This fact agrees with the description in
Ref. f6g. Therefore the weight mean is superior than the ma-
jority vote especially in the case of a smallK. Moreover, it is
shown thateg for a largeK limit compared with that ofK
=1 is about 0.99, 0.72, and 0.68 times in Hebbian, percep-
tron and AdaTron learning, respectively. It has been con-
firmed that ensemble has the strongest effect in AdaTron
learning among three learning rules.

VI. CONCLUSION

This paper discussed ensemble learning ofK nonlinear
perceptrons, which determine their outputs by sign functions
within the framework of online learning and statistical me-
chanics. One purpose of statistical learning theory is to theo-
retically obtain the generalization error. In this paper, we
have shown that the ensemble generalization error can be
calculated by using two order parameters, that is the similar-
ity between the teacher and a student, and the similarity
among students. The differential equations that describe the
dynamical behaviors of these order parameters have been
derived in the case of general learning rules. The concrete
forms of these differential equations have been derived ana-
lytically in the cases of three well-known rules: Hebbian
learning, perceptron learning, and AdaTron learning. We cal-
culated the ensemble generalization errors of these three
rules by using the results determined by solving their differ-
ential equations. As a result, these three rules have different
characteristics in their affinity for ensemble learning, that is,

FIG. 17. Relationship betweenR and q stheoryd. Here, q of
AdaTron learning is the smallest when compared withR. The rising
of q is the slowest and variety among students is best maintained in
AdaTron learning.
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“maintaining variety among students.” The results show that
AdaTron learning is superior to the other two rules with re-
spect to that affinity.
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APPENDIX A: SAMPLE AVERAGES
OF HEBBIAN LEARNING

The update procedure for Hebbian learning is

f„sgnsvd,u… = sgnsvd. sA1d

Using this expression,kfkukl, kfkvl, andkfk
2l in the case of

Hebbian learning can be obtained as follows by executing
Eqs.s27d–s29d analytically f9,17g:

kfkukl =
2R
Î2p

, kfkvl =Î 2

p
, kfk

2l = 1. sA2d

In addition to these results, we have derivedkfkuk8l and
kfkfk8l. Since Eq.s40d is independent ofu, we obtain

kfkuk8l = kfkukl =
2R
Î2p

, sA3d

kfkfk8l = kfsgnsvdg2l = 1. sA4d

APPENDIX B: SAMPLE AVERAGES
OF PERCEPTRON LEARNING

The update procedure for perceptron learning is

f„sgnsvd,u… = Us− uvdsgnsvd. sB1d

Using this expression,kfkukl, kfkvl, and kfk
2l in the case of

perceptron learning can be obtained as follows by executing
Eqs.s27d–s29d analytically f9,17g:

kfkukl =
R− 1
Î2p

, kfkvl =
1 − R
Î2p

, sB2d

kfk
2l = 2E

0

`

DvHS Rv
Î1 − R2D =

1

p
tan−1

Î1 − R2

R
. sB3d

In addition to these results, we have derivedkfkuk8l and
kfkfk8l. Using Eq. sB1d, kfkuk8l and kfkfk8l in the case of
perceptron learning are obtained as follows by executing
Eqs.s33d and s35d analytically:

kfkuk8l =E dukduk8dvp3suk,uk8,vdUs− ukvdsgnsvduk8

=
R− q
Î2p

, sB4d

kfkfk8l =E dukuk8dvp3suk,uk8,vdUs− ukvdUs− uk8vd

= 2E
0

`

DvE
Rv/Î1−R2

`

DxHszd, sB5d

where

z;
− sq − R2dx + RÎ1 − R2v
Îs1 − qds1 + q − 2R2d

sB6d

and the definitions ofHsud andDx are

Hsud ; E
u

`

Dx, sB7d

Dx ;
dx

Î2p
expS−

x2

2
D . sB8d

APPENDIX C: SAMPLE AVERAGES
OF ADATRON LEARNING

The update procedure for AdaTron learning is

f„sgnsvd,u… = − uUs− uvd. sC1d

Using this expression,kfkukl, kfkvl, and kfk
2l in the case of

AdaTron learning can be obtained as follows by executing
Eqs.s27d–s29d analytically f9,17g:

kfkukl = − 2E
0

`

Duu2HS Ru
Î1 − R2D sC2d

=−
1

p
cot−1S R

Î1 − R2D +
1

p
RÎ1 − R2, sC3d

kfkvl =
s1 − R2d3/2

p
+ Rkfkukl, sC4d

kfk
2l = − kfkukl. sC5d

In addition to these results, we have derivedkfkuk8l and
kfkfk8l. Using Eq. sC1d, kfkuk8l and kfkfk8l in the case of
AdaTron learning are obtained as follows by executing Eqs.
s33d and s35d analytically:

kfkuk8l = −E dukduk8dvp3suk,uk8,vdUs− ukvdukuk8

=
1 + q

p
RÎ1 − R2 − 2qE

0

`

DvE
Rv/Î1−R2

`

Dxx2,

sC6d
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kfkfk8l =E dvdukukduk8uk8p3suk,uk8,vd,Us− ukvdUs− uk8vd

=
s1 − qd2s1 + q − 2R2d

2ps1 − R2d3/2 SÎs1 + qds1 − R2d
1 − q

− RD
+ 2sq − R2dE

0

`

DvE
Rv/Î1−R2

`

Dxx2Hszd

−
2Rs1 + q − 2R2d

Î1 − R2 E
0

`

DvvE
Rv/Î1−R2

`

DxxHszd

+ 2R2E
0

`

Dvv2E
Rv/Î1−R2

`

DxHszd, sC7d

where the definitions ofz, Hsud, andDx are Eqs.sB6d, sB7d,
and sB8d, respectively.
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